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Abstract 

This report details work completed in an AFOSR program focused on semi-autonomous 
control of cooperative vehicles. Coupled operator-multiple vehicle systems are modeled in 
a unified framework using probabilistic graphs to yield a methodology for analyzing semi- 
autonomous systems. The framework uses conditional probabilistic dependencies between 
elements, leading to a Bayesian network with probabilistic evaluation capability. Both 
discrete and continuous human decisions are modeled using statistical tools such as 
softmax and discrete, and Parzen and Gaussian sum distributions. Statistical formalism is 
maintained in order to enable probabilistic analysis and prediction. The theory has been 
applied to human decision data using RoboFlag, a multiple robot simulator of capture the 
flag; data was collected in a series of three tests, jointly developed and implemented with 
AFRL/HECP. Program contributions summarized here include: 1) probabilistic modeling of 
both discrete and continuous human decisions using probabilistic graphs; 2) Coupled 
human-vehicle probabilistic models; 3) empirical studies of human-vehicle systems with a 
focus on adaptive tasking; 4) theory and experiments with formal human sensor networks; 
5) cooperative geolocation using uninhabited aerial vehicles. 



Report Outline 
The following five areas of contributions, as developed within this program, are 
summarized in this report: 

1) probabilistic modeling of both discrete and continuous human decisions using 
probabilistic graphs; 

2) Coupled human-vehicle probabilistic models; 
3) Empirical studies of human-vehicle interaction with a focus on adaptive tasking; 
4) Theory and experiments with formal human sensor networks; 
5] Cooperative geolocation using uninhabited aerial vehicles. 

Each section also gives a summary of publications that were partially or fully funded 
by this program. A subset of these publications are appended to this report. 

The final two sections of this report summarize the technology transfer and 
educational contributions from this program. 
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Contribution #1: Human Decision Modeling Theory 

This contribution is to bring formal, probabilistic models to bear on the problem of human 
decision modeling. Incorporation of the human element is critically important for future 
defense missions, yet research in this area has had a relatively soft theoretical foundation. 

This is in contrast to vehicle technologies (control, tasking, tracking, etc.) which are 
typically quite formal. If formal methods can be developed for human decision modeling, a 
large amount of other work could be leveraged for human-automation systems (e.g. 
networked control, task allocation, etc.) 

Our approach has been to model human decisions as a probabilistic graph. 
Probabilistic graph models, also known as Bayesian Network (BN) models and Dynamic 
Bayesian Network (DBN) models (with time dependency), will be developed for human 
decisions, tasking, and sensory inputs. These models nicely capture variations across 
subjects and environmental conditions, intuitively describe decision dependencies, and can 
model joint human-vehicle systems - all in a formal probabilistic framework. The 
framework is ideal for modeling human-human collaboration as well as hierarchical 
decisions. 

To more easily understand the capabilities of these models, consider Figure 1, which 
is an integrated model of an operator commanding a UAV to track ground targets using a 
camera. The probabilistic model is represented by a directed graph, with each arrow 
indicating conditional probabilistic dependency. For example, the UAV position sensor 
(GPS) is nicely modeled as a normal Gaussian distribution, or p(Yuav\Xuav) =N(XUav£v)- Note 
that the model in Figure 1 is a BN with no time dependence; a Dynamic Belief Network 
(DBN) model is developed by repeating the BN model over a series of time slices, with an 
appropriate time based model. By maintaining connections between nodes, the model can 
be used for formal probabilistic algorithm development in estimation, prediction and 
optimization. 

Figure 1 shows two models which are well known in autonomous vehicles: Pose and 
Target Tracking. The Uninhabited Aerial Vehicle (UAV) model includes the mode of 
operation ((/), position/attitude state {XUav), and sensor measurements (Yuav). Estimation of 
the vehicle state can be accomplished using the well known Kalman Filter, which can be 
written in terms of the graph as p{Xuav\U>Yuav) ("probability of the UAV state, given the 
mode of operation and measurements"). The Target Tracking model includes the target 
type {V), position state (XCor), and camera measurement (Ycam), which depends on the 
location of the target and location/attitude of the UAV. Joint estimation of the target type 
and state is a classic target tracking problem, which can be solved with a multiple model 
Kalman Filter, p[XCar,V \ XuaVlYcam). 

The third model, which is the focus of this work, is the Operator Decision Model. In 
this example, the decision (D) is defined as the discrete tasking of the UAV by the operator 
(i.e. selection of the UAV mode of operation (/at the next time step). This decision is 
naturally a probabilistic function of the system states: p[D\ XuaVlVJ(tar,U), or the "probability 
of a Decision choice is dependent on the UAV mode and location; target type and location." 

Key to bringing control theoretic algorithms to the proposed human-vehicle 
network is the ability to model human operator decisions. Our work has developed a 
variety of methods for identifying (learning) probabilistic graph models for both discrete 
and continuous human decisions. 
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Figure 1: Probabilistic graph model of a single operator tasking a single UAV to track (and estimate states) of a 
target. Circles denote continuous vector valued random variables, squares discrete random variables, 
and shaded blocks indicated that direct measurements are available. 

Our work has produced a general approach to modeling both discrete and 
continuous human decisions, given a set of training data[l]-[7]. The operator decisions are 
modeled in this framework by defining and identifying p[D\X), which is the likelihood of the 
decision data [D) given the system state variables [X). In the discrete case, as defined in Ref. 
[3], a "decision model block," which includes internal nodes of logistic or softmax 
thresholding distributions. This notion is represented in Figure 2(left). Ref. [3] also outlines 
a solution procedure for this joint density in order to find a common, conditional density 
p[D\X), for any block structure. The simplifies to: 

V(D\X)=Y,     \V{D(,) X)-V{D\D 
-,<*> 1=1 

:D(") 

where the term on the right are the internal softmax distributions, and the term on the left 
is a discrete selection matrix. This important conclusion enables the optimization of 
internal distribution parameters as well as the "structure" (graph and connections) under 
one common cost function. Figure 2(right] shows how the optimization notionally works, 
where the discrete selection matrix is fixed, and the distribution parameters of the softmax 
variables are optimized. Once the likelihood begins to level off with increased numbers of 
softmax variables, additional "clusters" of graphs are added in order to improve the 
identified fit. 
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Figure 2: Bayesian Network determination. Left: Graph of a general decision block P[D\X) showing internal nodes 

of the graph. Right: Optimization of the Likelihood as a function of internal softmax variables and 
discrete selections. 

A principle feature of this approach is that it produces linear boundaries between 
decision clusters in state-space. The number of these linear boundaries is given by the 
number of hidden logistic nodes used inside the BN. In addition, since the BN node 
distribution parameters are obtained using maximum likelihood estimation (MLE), the 
likelihood function can be used to gauge model accuracy and over-fitting as more nodes are 
added to the BN; this also allows the fitting process to be automated off-line. Ref. [3] 
showed that with infinite data, the optimized parameters converge to the true distribution; 
with finite data, the parameters are bounded by confidence bounds in the form of a Chi- 
square distribution. The logistic BN classifier is a binary classifier naturally suited for 
discriminating between convex, unimodal clusters of decision data; for convex and 
unimodal multinomial decision data with N decision classes, N separate BN classifiers can 
be identified in parallel. Non-convex or multi-modal decision clusters, however, are more 
difficult to classify in this approach due to the nature of the logit probability function. 

The methodology in Ref. [3] was then evaluated using data from a set of RoboFlag 
experiments. Operators controlled three vehicles: two search vehicles, each with the ability 
to locate entities; and one ID vehicle, with the ability to identify the entity's type. During the 
mission, three types of entities could be encountered: a stationary flag; a stationary red 
robot which can tag if blue vehicles come too close; and a red chase vehicle, designed to 
chase any blue vehicle within a particular range. Probability of localization (uncertainty 
circles] and identity (color or circle) were improved when vehicles moved closer to the 
targets. When users are confident of the final type (classification), they formally selected 
the target type using a GUI. 

Results for 16 operators summarizing a simple case of tasking the ID vehicle tasking 
are shown in Figure 3(left). Also, shown are dotted lines which represent the decision 
boundary, as defined by the probabilistic BN. Figure 3(right) shows a typical probability 
plot for the BN, p(D=Loiter|X). Results show that users typically tasked the ID vehicle to 
move and identify the target when the ID probability ~0.5 (i.e. unknown). The loiter mode 
was commonly used at the start of the game (ID probability ~0.5, location uncertainty 
large), or in the middle of the game when moving to wait for the next target (ID probability 
~1, location uncertainty small). 



One of the more interesting cases is at the center of Figure 3 (left), where users 
tasked the ID vehicle to move in and ID the target before the location uncertainty had 
decreased (i.e. the users were still very unsure where the target was). During interviews 
and in the user videos, it was realized that many people performed a "strategic" play, when 
they sent both the localizing and ID vehicles in towards the target at the same time. The 
probabilistic models in Ref. [3] cannot, unfortunately, recognize the coupling of these 
moves over time. This is an important area of future research. 
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Figure 3: Results from AFRL led RoboFlag experiments for tasking the ID vehicle. Left: Data for tasking the ID 
vehicle; operator decisions were classified as either tasking the ID vehicle to loiter, or move in and ID 
the target. Right: Likelihood graph after the BN has been identified. 

These modeling concepts were extended in theory for both the continuous and 
discrete model cases. In the discrete case, the primary extension was to develop a more 
general modeling approach that considered multi-modal human decisions [6]-[7]. 
Conventional softmax regression can be extended to multi-modal decision data by 
subdividing the data prior to model identification. Consider the case of no discrete 
decisions in D, and a set of system state variables X. Assuming that the data for the ith 
operator decision D, can be clustered into d, exclusive subsets, then d distinct softmax 
conditional probabilities can be estimated similar to the approach in Ref. [3]. The operator 
decision likelihood is then simply the sum of the corresponding d, softmax probabilities. 

d d, 

V(V = i\X) = Y^VIP = *\S = J) • V(s = 3\X) = J2V('D = l\S = ^ • V(S = l\X^ 
i=\ e=i 

The resulting BN is shown in Figure 4, which shows extensions to multi-modal 
discrete decision data. Figure 4(center) shows data for no=3 decisions; this data can be 
further divided into d, subdivisions, and Figure 4(right) illustrates the estimated BN. Note 
that the likelihood p[D=l\X) no longer ensures a convex optimization problem for 
estimating the softmax weights, as it was in the original procedure. However, the Hessian 
matrix for the weights is never positive definite, so that the likelihood can only have local 
maxima or saddle points, thus most likely yielding good fits to the data. 
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Figure 4: Multi-modal modeling: Left: The BN model. Center: Two-dimensional data set with $n_D=3$ discrete 
decisions. Right: The conditional probability for one decision, 

For more complex decision models, which may include complex decision boundaries 
(in the case of discrete decisions) or continuous decisions, non-parametric modeling 
procedures were developed. In this case, class-conditional probability density functions 
(pdfs) f(X|D) for the state-variables are estimated, and coupled with prior probabilities 
p(D), then an indirect estimate of p(D|X) can be developed using Bayes' rule: 

The decision class priors p(D) may be estimated from the training data using frequency 
counts, while class-conditional probability densities f(X|D) can be estimated via 
parametric, semi-parametric, or non-parametric methods. Parzen's kernel method is 
widely used for nonparametric density estimation in statistical classification because the 
estimates are easy to train and can offer robust performance without making any 
assumptions about the underlying class-conditional densities. For a given decision class i 
with training set x_i with n_i points, the Parzen density estimate is given by a sum of n_i 
kernel pdfs centered about each sample point. Gaussian kernels are common, leading to a 
sum of Gaussians mixture model. 

The nonparametric approach leads to the simple BN representation shown in 
Figure 5. Since Parzen density estimates asymptotically approximate any probability 
density function, they are ideal for generating non-linear decision surfaces. Figure 
5(center) shows a sample training set for n_D=3 decisions that are non-linearly correlated, 
and Figure 5(right) shows the post-processed likelihood function, p(D=2|X) for the data. 

In addition to the general theoretical approach, three significant theoretical 
guarantees were made in this work: 

Given a set of labeled, discrete human decision data, we have developed an 
approach that guarantees convergence to the true distribution parameters in the 
limit of unlimited data. 
Given a set of labeled, discrete human decision data in non-convex clusters, no 
matter how large, we have developed an approach that guarantees convergence to 
the true distribution parameters in the limit of unlimited data. 
Given a set of labeled, continuous human decision data, we have developed a mixed 
Gaussian representation with a new factorization that enables ease in identifying 
the distribution parameters; in the limit of unlimited Gaussians and data, the 
approach is guaranteed to approach the true distribution. 
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Figure 5: Nonparametric modeling: Left: The BN model. Center: Two-dimensional data set with $n_D=3$ discrete 
decisions exhibiting non-linear class correlations. Right: Post-processed conditional probability for one decision. 

Extensive evaluation of the modeling procedures has taken place. Because this is a 
system identification modeling procedure (i.e. developing models from data), a data 
holdout approach was taken. In addition, our approaches were generally benchmarked 
against state of the art research, and with other datasets that are accepted in the field. The 
multi-modal decision modeling approach, termed the multimodal softmax (MMS) model, 
exploits the concept of discriminative subclass modeling to estimate parameters for 
complex class posterior distributions without relabeling training data, in contrast to 
existing 'hard subclass' discriminative modeling strategies. The MMS model can also be 
shown to provide a discriminatively learnable generalization of both the softmax model 
and the widely used class of Gaussian mixture model based posterior models. Classification 
experiments with benchmark and application data compare the training cost and accuracy 
of the MMS model with those of hard subclass models (HSS) and other well known 
probabilistic models, such as kernel methods and hierarchical mixture of experts (HME). 
The MMS model is shown to achieve a high level of discriminative modeling accuracy with 
relatively low training cost: 

TABLE 1 
Benchmark Classification Error Statistics (mean % error, standard deviation). 

Data Set Softmax MM'. HSS Besl ME 

Class 38.10 ± 2.14 24.10 ± 3.33 34.76 ± 2.67 32.93 ±2.47 (ME2) 

IVBl'O 3.34 ± 0.19 2.12   :   0.19 3.29 ±0.27 3.85 ±0.28 (ME3) 

Banana (linear) 47.09± 4.52 12.12  :   2S4 13.17 ±1.37 12.76 ±0.85 (ME4) 

Banana (quadratic) 35.94± 3.79 11.37 ± 0.75 15.20 ±3.82 11.80±0.83(ME3) 

Thyroid 13.01 ± 5.00 7.12 ± 4.13 7.28 ±4.25 9.11 ±4.37 (ME6) 

Image 48.16 ± 9.28 6,51   1   2.26 45.03 ±8.88 48.16 ±9.27 (ME3) 

Ttwrwrm (linear) 4.20 ± 0.69 4.59 ± 0.67 5.68 ± 1.01 3.90 ± 0.43 (ME!) 

Tuvnorm (RBF) 4 65 i 1.91 3.36 ± 0.58 4.57 ±1.93 3.77 ±0.87 (ME6) 

Benchmark Training Costs (me; 
TABLE 2 

n training time (CPU sees), parameter count) 

Data Set St* 1M\ MMS HSS Besl Ml 

Glass 0.9C 60 1.-55, 130 2.78, 130 23.64, 140^ 

WBCO 1.24 .2(1 0.15, 30 1.60,30 68.98,90 

Banana (linear) 0.61 1. ( 2.37, 24 1.15,24 40.35, 36 

Banana (quadratic) 0.67 12 0.71, 24 1.15,24 38.62, 54 

71(1/ will 0.4C 12 0.28, 18 0.45, 18 18.76. 108 

Image 4,> 4.: 27.55, 84 6.52. 84 151.63. 189 

Tuxnorm (linear) 1.4f 21 0.81,84 2.10,84 50.83. 189 

Itoonorm (RBF) 1.0 1, i. 2.21, 12 1.20. 12 48.73, 54 



The decision modeling approach was also evaluated using human decision data 
from the Roboflag experiments, where humans tasked robots in a search and ID mission. 
The classification problem attempted to find the probability of a decision D, given a 12 
dimensional input feature vector X. All models were trained and validated via 30 holdout 
trials. Table 3 shows the classification errors for each model on each of the three example 
data sets; statistically significant comparison results are shown in bold. Table 4 shows the 
training time. In all cases, the MMS model appears to strike a very good balance between 
training time and accuracy. 

TABLE 3 
RoboFlag Classification Error Statistics (mean % error, standard deviation). 

Case Softmax SVM «W GMM-A GMM-B HSS-A HSS-B Best ME 

1 19.09 ± 0.63 15.71 ± 0.48 17.11 ± 0.74 17.91 ±0.69 16.83 ±0.47 18.35±0.95 19.17±1.03 16.27 ±0.43 (ME2) 
2 23.23 ± 0.68 18.53 ± 0.83 18.01 ±0.85 21.40 ±0.77 20.65 ± 0.77 19.36±0.77 19.21±0.74 18.47 ±0.68 (ME3) 

3 61.93± 0.28 40.62 ± 1.11 40.25 ±1.06 43.12 ±1.76 39.69 ± 1.51 41.93±1.13 43.22±1.11 41.42 ±0.91 (ME4) 

TABLE 4 
RoboFlag Training Costs (mean training time (CPU sees), parameter count). 

Case j Softmax SVM MMS GMM-A GMM-B HSS-A HSS-B Best ME 

1 2.24, 39 173.06, 1222 16.21, 143 0.56, 13167 0.90, 21546 11.61, 143 34.51, 234 71.93, 104 

2 1.89, 39 135.52, 1404 5.30, 104 1). 17. 9576 0.37, 10773 6.06, 104 7.86, 117 96.47, 156 

3 4.63, 78 40.53, 1428 9.42, 143 0.27, 13167 0.73, 21546 18.45, 143 48.96, 234 219.48, 208 

Publications related to this contribution, and funded in part by this program, include 
the following. Note that the publications with a '*' are attached to this report in an 
appendix. 
[1]    J. Veverka, M. Campbell, "Towards an Operator Decision Model for ISR Type 

Missions," AlAA Guidance, Navigation and Control Conference, Aug 2005. 
[2]    J. Veverka, M. Campbell, "Operator Decision Modeling for ISR Type Missions," IEEE 

Conference on Systems, Man, and Cybernetics, Oct 2005. 
[3]    *M. Campbell, S. Sukkarieh, A. Goktogan, "Operator Decision Modeling in Cooperative 

UAV Systems," 2006 AlAA Guidance, Navigation and Control Conference. 
[4]     M. Campbell, N. Ahmed, S. Sukkarieh, "Operator Decision Modeling in Cooperative 

UAV Systems," submitted to the AlAA Journal of Guidance, Control and Dynamics. 
[5]    D. Shah, M. Campbell, "State-Dependent Probabilistic Model Reduction for Evaluation 

of Human-Robotic Autonomous Systems", 2007 IEEE Systems, Man and Cybernetics 
Conference. 

[6]     N. Ahmed, M. Campbell, "Multimodal Operator Decision Models," 2008 American 
Control Conference, Seattle WA. 

[7]    *N. Ahmed, M. Campbell, "Discriminative Subclass Modeling without Relabeling," 
submitted to the IEEE Transactions on Systems, Man and Cybernetics. 



Contribution #2: Coupled Human-Vehicle Probabilistic Models 
This contribution was to explore how far a human-vehicle system could be jointly modeled 
using the probabilistic graph theory. While this contribution was largely systems like in 
nature, it provides a solid understanding as to where the advantages and limitations in 
modeling these systems are. Initial work has been completed in Refs.[8],[9], while further 
work, including an evaluation using data holdout, is on-going. 

The RoboFlag experiments provide large sets of data which can be used to explore 
coupled operator-vehicle modeling. One example is to decompose the system into 
hierarchy of control/decision making, as shown in Figure 6(left). Four levels are assumed: 
Vehicle(s) Selection and coordination; Play Selection for strategies; User Clicks for tactical 
locations; Vehicle Motion based on its actuation. The vehicle motion model is deterministic. 
All models based on human decisions are developed using the techniques from our 
research, based on the data. 

As an example of developing a probabilistic model from operator data and using it 
for prediction, consider the case of an operator tactically tasking the search vehicle (i.e.\ 
the operator selecting a point on the field for the search vehicle to move). This is the 
shaded block in the BN in Figure 6(left). Figure 6(center) illustrates the entire set of tactical 
search data obtained from the RoboFlag I data (vehicle start points, assignments, and 
trajectories). A probabilistic model of this decision can be developed using the 
nonparametric Parzen density estimation, as described earlier. Figure 6(right) shows how 
this is constructed and used. The vehicle is at the blue star. From the RoboFlag data, 
previous cases of users tasking the search vehicle from a "similar location" (within a 
particular probability level of the nominal location; these are denoted by {red stars}. The 
corresponding vehicle assignment points, denoted by {black dots}, are each assigned a 
Gaussian kernel at the location of the {black dots}. The vehicle assignment pdf is then 
formed by summing these Gaussians, weighted by the location of the starting point 
(denoted by the height of the red points). Figure 6(right) shows the density contours of this 
pdf, which could be used to find the corresponding likelihood, p(U_{tact}|U_{strat},X) in 
Figure 6(left). 

System States Q 

Vehicle Selection 

Play Selection 

Click Location 

Vehicle Motion 

Figure 6: Coupled operator-vehicle model based on RoboFlag. (a) Hierarchical graph model; (b) Data for user 
tasking search vehicles (start: {red stars}, way point assignment: {black dots}, and path: line); (c) Contour of the 
probabilistic tactical decision density model. 

in 



Publications related to this contribution, and funded in part by this program, include 
the following. Note that the publications with a *' are attached to this report in an 
appendix. 
[8]     *F. Bourgault, N. Ahmed, D. Schrader, M. Campbell, "Probabilistic Operator-Multiple 

Robot Modeling Using Bayesian Network Representation," 2007 AIAA Guidance, 
Navigation and Control Conference. 

[9]    M. Campbell, F. Bourgault, S. Galster, D. Schneider, "Towards Probabilistic Operator- 
Multiple Robot Decision Models," 2007 International Conference on Robotics and 
Automation. 

Contribution #3: Empirical Studies of Adaptive Tasking in Human- 
Vehicle Interaction with AFRL/HECP 
This contribution was to empirically study, with collaborators from AFRL/HECP, the 
concept of adaptive tasking in human-vehicle systems; the data from these tests could then 
be used to validate the modeling approaches (described in Contributions 1 and 2). 

The approach was to utilize a testbed developed at Cornell, called RoboFlag. 
RoboFlag is a human controlled simulator of the game "Capture the Flag.' RoboFlag is 
ideally suited to study semi-autonomous systems because operators can be easily 
integrated into the loop, basic mission types such as ISR can be studied, and system 
parameters and uncertainties can be manipulated quickly (such as communications 
constraints, vehicle types, and sensor types). The simulator has been used extensively by 
AFRL and the Co-PI's group as a basic research tool. 

A modified game was developed for this project, in conjunction with Drs. Scott 
Galster and Benjamin Knott from AFRL/HE. The goal was to locate and identify two targets, 
which could be flags or red agents. Operators controlled three vehicles: two fast search 
vehicles, each with the ability to locate entities; and one slower ID vehicle, with the ability 
to identify the entity's type. During the mission, three types of entities could be 
encountered: a stationary flag; a stationary red robot which can tag if blue vehicles come 
too close; and a red chase vehicle, designed to chase any blue vehicle within a particular 
range. Probability of localization (uncertainty circles) and identity (color or circle) were 
improved when vehicles moved closer to the targets. When users are confident of the final 
entity type (classification), they formally selected the target type using a GUI input. 

Three sets of games were conducted: manual (way point control) in 2006, 
automated (plays developed from the manual data) in 2007, and adaptive in 2008. The 
differences in the games focused on the interactions and feedback loops. In the first set, the 
operator primarily controlled the vehicles manually, with point and click waypoints. In the 
second set, there was a suite of automated plays derived from our understanding of the 
manual game. In the third, feedback loops were added during and after the games, based on 
the primary metrics of the game (see below). For each study, 16 subjects from the AFRL 
subject pool were used, with 24 trials each; a 4x4 matrix of target location and type was 
used. All vehicle telemetry data was saved, and users were video recorded. GUIs for these 
three games are shown in Figure 7. 
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Figure 7: GUIs for the three sets of RobaFlag games. From left to right: Manual, Autonomous, and Adaptive. 

With all three sets of games completed, recent work has focused on statistically 
analyzing the results of the games, and across the games. For the analysis across each 
game, six metrics were statistically analyzed to evaluate the users' mission performance: 

Mission time: total time spent completing each trial; typically correlated to user 
efficiency. Shorter mission times indicate that the human user was able to allocate 
resources efficiently and implement appropriate actions. 

Idle time: percent of time robots were without instruction; typically caused by high 
operator load. Robots were considered idle when they were without instruction 
(standing still), except in cases where they were collecting location or ID 
information from an in-range target. In general, an idle robot indicates an 
underutilization of resources because it is not actively contributing to the mission 
objectives. This typically occurs when the operator is distracted (for example, a 
robot is being chased by the CHS) and is unable to allocate attention to all robots 
equally. 

Tag events: number of times a robot was "tagged' by an enemy agent. Robots are 
temporarily unusable when tagged, so these are obviously undesirable events. Not 
only do tag events decrease the resources available to the operator, but they may 
necessarily increase the overall mission time if targets can not be located/identified 
until the tagged robot(s) become active again. This is especially the case when the 
tagged robot is the sole IDV. 

Human input: frequency of instructions given by human user; typically a measure of 
operator workload/attention. The number, frequency, and type of instructions given 
by the operator are measures of mental workload and attention allocation. 

Target ID probability: amount of identity information collected when target identified. 
Target location radius: amount of location information collected when target identified. 

To test the effects of the experimental manipulations on the above performance 
metrics, a 3 (RF game number) x 2 (flag location -- near/far) analysis of variance (ANOVA) 
was performed, the results of which are presented in the table below: 

Table 1: Results of 3 x 2 ANOVA. where significant interaction effects are reported. 

Mission time F(2,547) = 5.80, p < 0.01 
% Idle Time F(2,547) = 27.48, p < 0.001 
Num. tag events F(2,547) = 7.76. p < 0.001 
Num. user inputs F(2,547) = 5.70, p < 0.01 
ID probability F(2,547) = 18.31, p < 0.001 
Location radius F(2,547) = 4.42, p < 0.05 
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This table shows that there were significant interaction effects across all six metrics. 
These interactions more fully using post hoc paired t-tests. While the full results are 
summarized in Ref. [12], the results for "Mission Time' are summarized here. 

The results of a 3 (game number) x 2 (flag location) ANOVA indicate that there was a 
significant interaction between these factors on average mission time, F({2,547}) = 5.80,p < 
0.01. A post hoc paired t-test was performed to determine the source of variance, the 
results of which indicate that there was a significant difference in mission time between all 
three games, as shown in this table 

Table 2: Results of post hoc paired t-test for mission time. 

I vs. II :       ((367.14) = 2.042,    p < 0.05 
I vs. Ill :      t (246.10) = 7.201,    p < 0.001 
II vs. Ill :    t (305.13) = 6.587,    p < 0.001 

It can be seen in Figure 8 that users took longest on average to complete set I trials, where 
robots could only be controlled using waypoints. The addition of automated plays 
(especially Evade/Avoid) in set II decreased overall game time by an average of 11.40 
seconds, almost 10%. In set III, users could use both automated plays and waypoint 
control, and performance feedback (especially the idle-alert feature) encouraged greater 
efficiency. As a result, the average set III mission time decreased another 22.44 seconds — 
approximately 21% from set II. 

A post hoc paired t-test also showed a significant difference (t({202}) = 3.036,p < 
0.01) between near/far target configurations for game I, but not for games II or III. This 
indicates that increasing automation had the desirable effect of increasing uniformity in 
human efficiency both between mission configurations and across users. 

Interestingly, mission time in near cases (targets located close to one another near 
the Home Base) was not significantly improved with the addition of automated plays, 
suggesting that these trials were "easy' enough that waypoint-only control did not hinder 
the users' ability to perform the mission efficiently. However, for far cases (targets located 
far from Home Base and from one another) average mission time improved by about 25.6 
seconds (19.5%) with the addition of automated plays (t({168.30» = 3.323,p < 0.01). 
Users were able complete these harder' missions in less time with assistance from 
automatic Evade and Avoid decreasing tag occurrences, and by using strategic plays like 
Decoy to give more complicated commands without using distracting and time-consuming 
waypoint control. Average mission time decreased an additional 23.7 seconds (22.3%) 
when performance feedback was provided (t({161.48}) = 4.879,p < 0.001), as users were 
kept aware of idling robots and end-of-game scoring encouraged lower mission times. 
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Figure 8: Mission time for near/far trials of all three RoboFlag experiments, units are seconds. The boxes have 
lines at the lower quartile, median, and upper quartile values. The whiskers extend from the box out to the most 
extreme data value within 1.5xIQR (interquartile range of the sample). The circle-cross symbols are located at 
the sample means. 

Publications related to this contribution, and funded in part by this program, include 
the following. Note that the publications with a '*' are attached to this report in an 
appendix. 
[10]  D. Schneider, M. Campbell, S. Galster, A. Klochko, J. Veverka, "The RoboFlag Test 

System for Decentralized Autonomous and Semi-Autonomous Cooperative Multi- 
Agent Systems Research," submitted to the IEEE Transactions on Control Systems 
Technology. 

[11]  D. Shah, S. Galster, M. Campbell, F. Bourgault, N. Ahmed, B. Knott, "A Study of Human- 
Robotic Teams with Various Levels of Autonomy," 2009 AIAA Infotech conference. 

[12]  *D. Shah, S. Galster, M. Campbell, N. Ahmed, B. Knott, "On Operator Control and 
Human-Robotic Team Performance," submitted to the IEEE Transactions on Systems, 
Man and Cybernetics. 
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Contribution #4: Human Sensor Networks 
This contribution was to develop formal theory and perform experiments of sensor 
networks with human elements. Typical sensor networks are large, yet the information is 
very simple; many times, such as in consensus methods, probabilities are not even taken 
into account. The challenge with humans is that the information will be complex; the 
probabilistic graph theory, which fits well hear by developing decision likelihoods, creates 
models that are intuitive, but complex. 

The general approach to sensor networks and fusion is shown in this equation: 

p(Xfc|Ifc) =p(Xfc|Ifc_i 

Here, the priori pdf is fused with measurements (and likelihoods) from different sensors. 
Two elements of the theory were explored in this case. The first was modeling 

humans as sensors. In typical sensors, models are termed probabilistic likelihoods, which 
are usually simple, such as Gaussian distributions. But, they are not a function of time, 
which allows the BN probabilistic graph model work developed here to be used. The 
second element of the theory is the information sharing. Our approach was to use a grid 
based approach, so that the general likelihood models from humans could always be 
considered (at the expense of computation). Channel filtering concepts were used, which 
were first developed using Kalman Filter based theory. Here, each communication channel 
is monitored for information sent back and forth. Only new information is sent at each time 
step. For tree-like topologies, even in the presence of communication uncertainties such as 
drops, the solution is guaranteed to converge to the centralized solution. Details of the 
theory can be found in Refs. [13].[14]. 

The applicability and limitations of the operator decision modeling theory for a 
realistic scenario was tested using humans in a search experiment. The mission was to task 
a group of humans to search for a white golf ball on Cornell's Ithaca campus, in the winter. 
Five human operators were equipped with handheld computers which were linked 
wirelessly in an ad hoc network. This network would drop packets, and not communicate 
when out of range; therefore, the fusion process had to include these assumptions in order 
to maintain theoretical consistency in the estimator. All computers had (uncertain) GPS 
and compass measurements; so, likelihoods for these measurements were also available. 

A BN model of a human "search' measurement likelihood (target detection) was 
developed, as shown in Figure 9(left), which shows dependency on range and bearing. 
Figure 9(center) shows the likelihood of target detection using human vision. This model 
was developed using actual measurements of instances of detection/no detection for 
several human subjects. The model shows a forward-facing human, where maximum target 
visibility is straight ahead. As seen in Figure 9 (left), detection drops off and is 
approximately zero when the target is located >3m from the human sensor, mostly due to 
snow, shadows, or other visual obstructions. Target detection drops off on the sides as 
peripheral vision makes it difficult for the human to see possible targets. 
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Figure 9: Likelihood of Detection models for human vision (left.center) and robot (right). The vertical axis (y) is 
along the human's center of gaze. The horizontal axis is at the edge of the human's peripheral vision, where there 
is no target visibility. Red contour lines indicate high likelihood of detection. All units are in meters. 

Figure 10 shows the experiment hardware (left) and results for one node (right). All 
fusion was accomplished using a grid based PDF, which was used to present the user with a 
probability of target location. Because grid based methods were used, constraints such as 
buildings could easily be incorporated. Figure lO(right) shows the results from one human 
node, which overlays a satellite image of campus with the real time fused PDF of the target 
location; also shown in the trajectory of one human's path. The human moves towards 
locations of high target location probability; as the human moves, its measurement (GPS, 
compass/heading, target yes/no) is fused into the network and shared appropriately. The 
modeling and fusion process worked well, even for a system with up to five nodes 
[13].[14]. 
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Figure 10: Recent experiment with a network of humans in a probabilistic search experiment. Left: Hardware, 
including five handheld PC's with local network capabilities. Right: Overlay of satellite imagery with a probability 
density of "probable" locations of the target. 
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Publications related to this contribution, and funded in part by this program, include 
the following. Note that the publications with a '*' are attached to this report in an 
appendix. 
[13]  F. Bourgault, A. Chokshi, M. Campbell, "Human-Computer Augmented Nodes for 

Scalable Mobile Sensor Networks," 2008 IEEE SMC International Conference on 
Distributed Human-Machine Systems, Athens Greece. 

[14] *F. Bourgault, A. Chokshi, J. Wang, D. Shah, F. Cedano and M. Campbell, "Scalable 
Bayesian Human-Robot Cooperation in Mobile Sensor Networks," 2008 IEEE 
International Conference on Intelligent Robots and Systems. 

[15]  F. Bourgault, A. Chokshi, J. Wang, D. Shah, F. Cedano and M. Campbell, "Scalable 
Bayesian Human-Robot Cooperation in Mobile Sensor Networks," to be submitted to 
the International Journal of Robotics Research. 
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Contribution #5: Cooperative Estimation and Control 

While this project primarily focused on human decision modeling, the application of 
interest was Intelligence, Surveillance and Reconnaissance missions (ISR). Thus, some 
work in autonomous UAVs (single and cooperative) for missions such as geolocation, was 
performed [16]-[30]. Contributions here range from verification of on-line estimation and 
control algorithms on UAVs; path planning theory which maximizes information collection 
across multiple vehicles; and cooperative geolocation (theory and experiments) using 
UAVs with gimballing camera payloads. The latter was the primary focus, with research in 
information fusion work, cooperative bias estimation, and cooperative planning for 
tracking. 

Publications related to this contribution, and funded in part by this program, include 
the following. Note that the publications with a *** are attached to this report in an 
appendix. 
[16]  D. Schneider, M. Campbell, "Real Time Optimal Task Allocation in Highly Dynamic 

Environments," ASME International Mechanical Engineering Congress and Exposition, 
Nov2005. 

[17]  M. Campbell, J. W. Lee, E. Scholte, D. Rathbun, "Flight Results for On-line Estimation, 
Planning and Control using the SeaScan UAV," AIAA Journal of Guidance, Dynamics and 
Controls, Vol 30, No 6, 2007, pp. 1597-1609. 

[18]  E. Scholte, M. Campbell, "Robust Nonlinear Model Predictive Control with Partial State 
Information," IEEE Transactions on Control System Technology, Volume 16, No. 3, 
2008. 

[19]  *M. Campbell, W. Whitacre, "Cooperative Tracking using Vision Measurements on 
SeaScan UAVs," IEEE Transactions on Control System Technology, Vol. 15, No. 4, July 
2007, pp. 613-626. 

[20] W. Whitacre, M. Campbell, "Cooperative Estimation in Networks of UAVs with 
Delayed Data," 2007 AIAA Guidance, Navigation and Control conference. 

[21]  J. Ousingsawat, M. Campbell, "Planning for Cooperative Multi-vehicle 
Reconnaissance," AIAA Journal of Aerospace Computing, Information, and 
Communication, Vol. 4, No. 1, Mar-Apr 2007. 

[22]  J. Ousingsawat, M. Campbell, "Optimal Planning for Cooperative Reconnaissance 
Using Multiple Vehicles," AIAA Journal of Guidance, Control, and Dynamics, Vol. 30, No. 
1, Jan-Feb 2007, pp. 122-132. 

[23]  D. Stevenson, M. Wheeler, M. Campbell and W. Whitacre, R. Rysdyk and R. Wise, 
"Experiments in Cooperative Tracking of Moving Targets by a Team of Autonomous 
UAVs", 2007 AIAA Guidance, Navigation and Control Conference, AIAA-2007-6756 

[24]  M. Wheeler, R. Wise, R. Rysdyk, W. Whitacre, M. Campbell, "Autonomous Cooperative 
Geo- Location and Tracking of Moving Targets," 2007 Infotech@Aerospace Conference, 
AIAA-2007-2852. 

[25] W. Whitacre, M. Campbell, M. Wheeler, D. Stevenson, "Flight Results from Tracking 
Ground Targets Using SeaScan UAVs with Gimbaling Cameras," 2007 American 
Control Conference. 

[26]  M. Wheeler, M. Campbell, R. Rysdyk, B. Schrick, W. Whitacre, R. Wise, "Cooperative 
Tracking of Moving Targets by a Team of Autonomous UAVs," 2006 Digital Avionics 
Aerospace Conference. 

1R 



[27]  M. Campbell, M. Wheeler, "A Vision Based Geolocation Tracking System for UAV's," 
2006 AIAA Guidance, Navigation and Control Conference. 

[28]  W. Whitacre, M. Campbell, "Information-Theoretic Optimization of Periodic Orbits for 
Cooperative Geolocation," AIAA Guidance, Navigation and Control Conference, Aug 
2008. 

[29]  M. Campbell, M. Wheeler, "A Vision Based Geolocation Tracking System for UAV's," 
AIAA Journal of Guidance, Dynamics and Controls. 

[30]  W. Whitacre, M. Campbell, "Cooperative Estimation using Mobile Sensor Nodes in the 
Presence of Communication Loss," submitted to the AIAA Journal of Guidance, Control 
and Dynamics. 
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Technology Transfer 

There are several areas of notable contributions in terms of technology transfer and 
dissemination. First, the RoboFlag software has been used by AFRL as a simulated 
command and control (C2) task. Recent research at AFRL using RoboFlag includes the 
evaluation of a flexible delegation-type interface for the control of multiple UAVs in an 
adversarial, team-based environment, the influence of instant messaging (IM) on team 
performance and communication in an adversarial, team-based environment, and 
investigations of spatial and temporal cognitive load as a potential mitigator of team 
performance and communications. The simulator has also been used by collaborators at 
Caltech, Vanderbilt, and a number of other universities. 

Second, the general formal, probabilistic approach to considering humans has been 
adopted by a number of groups, and is now a focus of research and even MURI programs. 
Dr. Scott Galster has transferred some of the topics to his 6.2 MIIRO program at AFRL. 

Finally, there are of course many publications to the community, as well as talks to 
universities (including underrepresented colleges), and several keynote addresses on the 
topic. Partially from this work, the PI achieved the Associate Fellow status at the AIAA. 

Education 

This program has also educated a number of undergraduate and graduate students, 
as well as Post-Doctoral scholars. The list below includes the graduate students and Post- 
Docs. 

Jesse Veverka, MS 2006 
David Schneider, PhD 2006 
Nisar Ahmed, PhD candidate (also NSF fellowship winner) 
Danelle Shah, PhD candidate (also NDSEG fellowship winner) 
William Whitacre, PhD candidate 
Frederic Bourgault, Post-Doc 

Many undergraduates also are introduced to their first research experiences, specifically 
using the testbeds; a portion of this work has led to publications with undergraduate 
students. 
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Appendix: Partial Publications from the Program 
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